
DevOps with Containers

Noel O’Connor

Senior Principal Architect, Red Hat

noconnor@redhat.com

1

Mike Hepburn

Global Principal Architect, Red Hat

mhepburn@redhat.com

mailto:noconnor@redhat.com
mailto:mhepburn@redhat.com

Container Native Applications

▸ Cloud Native (for today’s world) leans towards building Systems

･ For example, a cloud native container platform (i.e. OpenShift)

･ No longer preferable to deploy new applications onto VMs

▸ Container Native leans towards building Applications to run on Container platforms

･ Applications that take advantage of the features of the underlying container platform

･ Abstracts developers as much as possible from infrastructure concerns

･ Resilient - not just during failure

･ Operationally consistent

Cloud Native Definition: https://github.com/cncf/toc/blob/master/DEFINITION.md

Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as

public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs

exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust

automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil.

Cloud Native...

https://github.com/cncf/toc/blob/master/DEFINITION.md

Container Native

Cloud Native

Cloud Ready

Cloud Thanos ;-)

● Well Defined Services/Monolith
● Automated deployment
● Cloud suitable configuration

● Independently Deployable Services
● Fault tolerant
● Suitable configuration & discovery

● Focuses on business logic
● Uses platform provided services e.g.

service discovery, configuration, HPA,
PDB, Observability

● Operationally consistent

● Manual deployment
● Network/Storage dependencies
● Manual service discovery
● Brittle, big-ball-of-mud

Container Native Application Layers

OpenShift

Application
Chassis

Business
Logic

Your App

Container Native Ingredients (Platform)

Container native runtime

▸ Certified Base Images

▸ KNative

▸ OpenShift Virtualisation

Observability

▸ Centralized logging - EFK

▸ Metrics - Prometheus

▸ Tracing - Jaeger

Service Mesh

▸ Timeouts management

▸ Circuit breakers

▸ Fault injection

▸ Advanced rollouts

Build/CI

▸ Approved pipelines

･ Build

･ Promotion/Deploy

･ GitOps

Container Native Ingredients (Platform)

Security

▸ Automatic distribution, rotation,

revocation of credentials

▸ Zero-trust network principles:

microsegmentation and mTLS

▸ Native support of Oauth

▸ Credential management

▸ Policies

Stateful components

▸ Platform Managed services e.g.

DBs, message brokers

Workload adaptability

▸ Auto-scaling

▸ Self-Healing

▸ Dynamic Storage

Container Native Ingredients (Application)

Application Endpoints

▸ Prometheus metrics scraping

▸ Probes - Liveness/Readiness

▸ Software Version

▸ Thread Dump generator

▸ Synthetic Transaction generator

▸ Dynamic logging level switch

▸ OpenAPI/Swagger

Metrics

▸ Connection Pools

▸ Last request timestamp

▸ Request/Error/Thread counts

▸ Garbage Collection (if applicable)

Container Native Ingredients (Application)

Configuration

▸ Runtime flags e.g. JVM -D

▸ ConfigMaps/Secrets/Env vars

▸ Service Serving Secrets

▸ Feature Flags

▸ Known ports - HTTP, debug etc

▸ Helm templates

MetaData

▸ Labels

▸ Annotations

Logging

▸ Consistent format

▸ Correlation Ids

▸ Default to stdout

Resiliency

▸ Shutdown signal handlers

▸ Circuit breakers status

▸ Timeouts and exponential backoff

Container Native Principles

Focus

▸ “Applications not platform”

Consistency

▸ In Development approach

▸ In Operational approach

Avoid NIH

▸ Utilise platform features

▸ Use 3rd party services, managed via Operators

Automate

▸ Strive to remove manual interaction as much as is feasible

Pathfinder Assessment Tool

When Migrating to Containers:

What Aspects of my Application do I need to consider?

What Changes do I need to consider to my Operational processes?

What does Good look like on a Container platform?

Pathfinder - Background

Basically - Does my app look good in this?

A Red Hat opinion on what Applications

Should,

Could

and

Should Not
Run in containers

Pathfinder - Purpose

-

Assessment Areas

The assessment questions cover the following application aspects

● Architectural Suitability
● Dependencies
● Application resiliency
● Communication
● Compliance
● State Management
● Runtime profile
● Observability

● Level of ownership
● Service Discovery
● Deployment Complexity
● Application Testing
● Application Security
● Application Configuration
● Clustering
● Custom questions can also be easily

added if required

Pathfinder - Demo

▸ Can I add my own questions?
Pathfinder ships with a default set of questions out of the box. It is possible to create additional
questions and add them to the assessment. See the following link
https://github.com/redhat-cop/pathfinder/wiki/Adding-custom-questions

▸ Can I export my data?
 Yes, Pathfinder supports exporting the collected data via the User Interface.

▸ How much does the application it cost ?
The Pathfinder application is fully open sourced see https://github.com/redhat-cop/pathfinder .
The only thing we ask is to follow the Creative Commons Attribution License for the questions and
answers.

▸ Can I install it on Kubernetes ?
Currently the Pathfinder installer relies on OpenShift templates to install MongoDB. However the
application itself can run on any K8S instance if you deploy it manually.

Frequently Asked Questions

https://github.com/redhat-cop/pathfinder/wiki/Adding-custom-questions
https://github.com/redhat-cop/pathfinder

Continuous Discovery & Delivery

Prevents change

Leadership

Builds things
wrong

Architecture

Builds wrong
things

Development

Builds things that
don’t matter

Product

Incidents and
outages

Operations

Five failures

Wall of Confusion

Development Operations

The confusion is not understanding the other game

Accelerate
Differentiation
and Creation of

Value

Operational
Excellence

and
Efficiency

Business Lines
Product Lines
BUs
Agile Feature Teams

Central IT

Two Governing Theories

GET MORE CUSTOMERS

ENTER NEW MARKETS

DO THINGS DIFFERENTLY

CONTROL CONSUMPTION

USE BEST PRACTICES

DO THE SAME THINGS
REPEATEDLY

Differentiation
Accelerate
Speed and direction. Getting
fast feedback from customers.

Novelty
Create opportunities for
disruptive innovation.

Niche
Fast feedback to get product fit.

Experiment
Fail fast continuous
experimentation.

Incubate
Invest in disruptive solutions with
significant potential impact .

Regulate
Regulate velocity,

Reduce
Variety and Variability

Resilience
Build residence into the system

Reuse
Reuse of components

Consolidate
Consolidate infrastructure

Scale

Three Games

EfficiencySharingNovelty

Some things that
start here…

...may eventually be
more valuable here

But are being managed
like they are here

re-commoning

Platform as an interface

Continuous compliance

Development Operations

Cloud Native Workflows

Leadership

Architecture

Development

Product

Operations

Tactical

Strategic

ScaleDifferentiation

North Star
Bringing DDD to the

Canonical Data Model

Executive Summary

Speed to business value is becoming a dominant driver in metrics driven technology transformations
within organisations today. The reasoning is multifaceted, but primarily this is a direct response to the
desire for vastly improved customer experience. A “North Star” Objective is a longer-term, high-level,
aspirational goal that motivates, inspires, and uplifts. This positional paper describes concrete techniques
to help bring “Domain Driven Design (DDD)”, microservices and distributed integration to an environment
that is currently dominated by traditional ESB products and Canonical Data Models.

https://konveyor.github.io/

Accelerating Digital Transformation the Open Source Way

A community of people passionate about helping others
modernize and migrate their applications to the hybrid
cloud by building tools and best practices on how to break
down monoliths, adopt containers, and embrace
Kubernetes.

https://konveyor.github.io/

Markus Eisele
Developer Adoption Lead Red

Hat

markus@redhat.com

OpenDevHour
Upcoming events

▸ True Hybrid Cloud App Dev: Building Manageable Cross Cluster Microservices

Architectures, JAN 14 | 16:00 CET

▸ More sessions are coming….stay tuned! #AI #Adoptium #Quarkus #GraalVM

Past events

▸ DevOps with Containers, DECEMBER 16

▸ Securing Microservices, NOV 17 | 16:00 CET

▸ Serverless stream processing of Debezium data change events with Kafka Streams and

Knative, OCT 20 | 16:00 CEST (CANCELED, postponed to 2021)

▸ Supersonic Secure Java with Quarkus, SEP 14

▸ Helm for Developers, AUGUST 18

▸ Quarkus the black swan of Java, July 23

https://red.ht/OpenDevHour

mailto:markus@redhat.com
https://red.ht/OpenDevHour

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

31

Red Hat is the world’s leading provider of

enterprise open source software solutions.

Award-winning support, training, and consulting

services make

Red Hat a trusted adviser to the Fortune 500.

