
RED HAT FORUM 2018 ZURICH 

PAAS: ARE YOU READY FOR PRODUCTION? 

PHILIPPE BÜRGISSER | SENIOR TECHNICAL CONSULTANT  



About me 

Philippe Bürgisser 
Senior Technical Consultant at Acceleris 
          Red Hat Certified Architect level II 
 
 
 
Focuses 



About Acceleris – Facts & Figures 
ACCELERIS AG

Bern
Renens
Zürich

 

ACCELERIS SRL

Bucarest
 

  1 OWNER         EMPLOYEES                REVENUE

60
SWITZERLAND  
& ROMANIA  ~30-40 Mio CHF 



About Acceleris - Solutions & SERVICES 

CONSULTING INFRASTRUCTURE 
SERVICES

CLOUD & IT 
OPERATIONS



About Acceleris and Red Hat 

•  Top-selling partner of Switzerland
•  First Premier Partner of Switzerland

•  OpenShift
•  Satellite
•  RHEV
•  OpenStack
•  Ceph
•  ...



The smart move 



The smart move, the initial design 



The smart move 



What design we recommended 



The final look 



How communication works 



The First Tests on Standalone Docker Hosts 

•  HTTP load tests toward standalone Docker daemon from partner network 

•  10K concurrent requests 

•  High percentage of success 



The First Tests on OCP 

•  HTTP load tests toward OpenShift from partner network 

•  10K concurrent requests 

•  High percentage of failure 



#1 Investigation 



#1 Investigation 

•  Running HTTPS stress tests with ab command against the frontal HAProxies toward OCP 

#1 Results 

1.  70% of failures , starting to fail at 3K requests 

2.  Results with ab different from partner’s JMeter cluster 

3.  OpenShift HAProxies (OCP routers) crashing 

4.  MAX_CONNECTIONS set to 20’000 

5.  Bypassing internet and firewall biased the results 

6.  Partner’s firewall dropping some traffic 

7.  Frontal HAProxies underperforming and adding unnecessary complexity  



#1 Mitigation 

•  OpenShift HAProxies (OCP routers) 

•  Crashing router: Bug opened at Red Hat [1], solved in OCP 3.7.54 

•  MAX_CONNECTION=50000 

•  Bypassing internet and firewall 

•  Frontal HAProxies underperforming: Extended memory and CPU allocation, tuning HAProxy: 
MAX_CONNECTION=50000 

•  Frontal HAProxies removed 

•  Deployed JMeter Cluster in front of OCP 



#1 Mitigation 



#1 Mitigation 



#1 Mitigation 



JMeter vs ab 

ab 

●  Real name: Apache Benchmark 

●  Available in RHEL base repo 

●  Simple command to use 

Jmeter 

●  Distributed testing 

●  Complex test recipes 

●  GUI 

●  Java based 



Jmeter cluster 

•  1 x Master to control the slaves 
with a GUI or CLI 

•  {n} x Slave to run concurent 
requests 

•  InfluxDB: time series DB to collect 
and store data 

•  Grafana: live charts based on 
influxDB data 

•  Fully deployed and configured with 



#2 investigation 

•  Running 10K concurrent HTTPS requests against OCP 

#2 results 

•  70% of requests failed 

•  OCP Routers consuming the full CPU of the pod 

•  SSL Termination pods (Nginx) consuming the full CPU of the node 



#2 mitigation 

•  OCP Routers 

•  Configured support of multiple CPU 
•  nbproc 4 

cpu-map 1 0 
cpu-map 2 1 
cpu-map 3 2 
cpu-map 4 3 

•  Extended number of maximum connection 
•  ROUTER_MAX_CONNECTIONS=10000 

•  Enabled logging in debug mode 
•  ROUTER_SYSLOG_ADDRESS = <syslog IP> 

ROUTER_LOG_LEVEL = debug 

•  Set higher CPU limit to the pod handling the SSL endpoint  



#2 mitigation 

•  Extended OCP node running routers to match expected results given by RH 



#3 investigation 

•  Running 10K concurrent HTTPS requests against OCP 

#3 results 

•  30% of requests failed 

•  CPU Consumption reduced and distributed among all CPUs of the OCP Routers 

•  Router logging:  
haproxy[144]: Connect() failed for backend be_tcp:cut-dev1:webserver: no free ports. 



#3 mitigation 

•  Kernel tuning: 
•  net.ipv4.ip_local_port_range="1025 65000” 

•  net.ipv4.tcp_tw_reuse = 1 

•  fs.nr_open = 100000 

•  fs.file-max = 100000 

•  Router tuning: 
•  DROP_SYN_DURING_RESTART = false 



#4 investigation 

•  Running 10K concurrent HTTPS requests against OCP 

#4 results 

•  < 1% of requests failed 



#4 investigation 

•  Running 10K concurrent HTTPS requests against OCP 

#4 results 

•  < 1% of requests failed 


