
Event Driven Architecture and Serverless with Red Hat

World of events

Stefano Linguerri

Solution Architect

Event-Driven
Architecture

Event-Driven Architecture

3

What is Event-Driven Architecture?

Event-Driven Architecture
(EDA) is a way of designing applications and services to respond to real-time

information based on the sending and receiving of event notifications

Event-Driven Architecture

4

Why Event-Driven Architecture or EDA?

Mirrors the real world

The real world is event-driven. Systems generate and

respond to events in everyday life, e.g., the human

central nervous system.

Reduced coupling

Traditional RPC-style service architecture results in

tightly-bound services. Changes to the application flow

typically require service code changes. EDA allows new

functionality to be added by adding services that

consume existing event streams.

Encapsulation

Microservices concepts have grown in popularity due to

the ability for service teams to develop services in

isolation. EDA means that service designers need not be

aware of how events are consumed.

Fine-grained scaling

Services can be independently scaled up and down to

meet the event volume.

Near real-time latency

Customers increasingly expect a near real-time

experience. Polling on APIs is a delicate trade-off

between responsiveness and load. EDA allow apps to

react in near real-time without compromise.

Event-Driven Architecture

5

What is an event?

Event
An action or occurrence
recognized by software, often
originating asynchronously
from the external
environment, that may be
handled by the software

Event-Driven Architecture

6

What is an event?

Async form of Remote Procedure Call,

contains instructions telling recipient

what to do, may cause a change of state.

QueryCommand

Similar to commands, queries expect a

response returning the results, but do

not cause any change in state.

Event

Immutable state and value of a particular

entity, which occurred during operation

among services.

Event-Driven Architecture

7

Types of event consumption patterns

Events stored durably until read by all

registered consumers. Traditional store-

and-forward brokers.

ReplayableDurable

Events stored durably for specific period

of time or storage capacity. Consumers

can move back and forth of the stream.

Volatile

The event needs to be disseminated to

all consumers online at time of

publication. Not persisted.

Orchestration vs Choreography

8

Orchestration vs Choreography

9

Event
Stream

Events management:
AMQ Streams

Stream Processing

11

Ingestion platform Applications

Streaming
data platform

Streams
Processing framework

Applications

SaaS

IoT

Let’s use just one

12

Applications

Streaming
data platform

Streams
Processing framework

Streams API

Applications

SaaS

IoT

Streaming data platform

13

Part of the Red Hat AMQ Suite

AMQ Streams on OCP
● Running Apache Kafka on OpenShift Container Platform
● Based on the upstream Strimzi project

AMQ Streams on RHEL
● Running Apache Kafka on “bare metal”

Red Hat AMQ Streams

Serverless

Why Serverless

15

Serverless Operational Benefits

15

Over provisioning
Time in capacity planning
IT cost of idle resources

Under provisioning
Lost business revenue
Poor quality of service

More applications
Direct line between IT
costs & business revenue

Without Serverless With Serverless
15

Serverless

16

Red Hat Serverless

Knative Serving Knative Eventing

Auto-scaling and scale-to-zero Messaging for event-based
applications

Serverless

17

Serverless Behaviour

Event
Serverless

Implementation

Triggers

● Fast boot up time
● Stateless
● Natively consuming cloud

events

Serverless Integration:
Camel K

Camel

19

?
Could connect to many

systems
With support for known

integration patterns

Works on and off the cloud Write integrations with a
simple language such as

XML, Java and YAML

from(“kafka:topic”)
 .to(“grpc:endpoint”)

Apache Camel

Serverless Camel K

20

▸ A platform directly running integrations on Openshift and

Kubernetes for Serverless loads

▸ Architectured by Kubernetes CRDs and Operators

▸ A community-driven project

▸ Part of Apache Camel

What is Camel K?

Serverless Camel K

21

Fast development with Camel Ｋ

Create
Integration file

EXECUT
E CLI Tools

RUNNING
Serverless
on OpenShift/Kubernetes

$ kamel run integration.java

1
2

3from(“knative:channel/xxxx”)
 .transform()...
 .to(“kafka:topic”)

from(“kafka:topic”)
 .to(“http:my-host/api/path”)

Serverless

22

Developer and Serverless with Camel K
"Seamless Developer Focus Experience"

Developer1. Write simple
stateless snippet
codes.

2. Pushes
code(Text).

3. Compile, build and
package

4. Deploy, create
resources/configuratio
n

5. Apply scaling
policies, connects
event mesh

Platform

Serverless Camel K

23

Event Source Broker

New
Event

Camel K

Provider

Event Providers

New Customer
created event Log service

Loyalty points
service

New
Event

New
Event

Eventing With Camel K

Camel K

300+ components!

Camel K

New
Event

Serverless Camel K

24

Event Source

New
Event

Camel K

Provider

Event Providers

New Customer
created event Log service

Loyalty points
service

New
Event

New
Event

Eventing With Camel K

Camel K

300+ components!

Camel K

New
Event

Red Hat
AMQ Streams

	World of events
	Event-Driven Architecture
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Events management: AMQ Streams
	Slide 11
	Slide 12
	Slide 13
	Serverless
	Slide 15
	Slide 16
	Slide 17
	Serverless Integration: Camel K
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

