
Create cloud happy
applications with Quarkus

Martin Östmark

Chief Architect AppDev, Nordics
Magnus Eklund

Specialist Solution Architect

Red Hat OpenShift Reference Architecture
Joint Red Hat and Intel OpenShift Reference Architecture

• Intel® Xeon (2nd Gen – Cascade Lake, 3rd Gen – Ice
Lake)

• Intel Optane (PMEM, SSD); Columbiaville

Intel enabling status

• Intel OpenShift RA for 4.6
• Intel OpenShift Solution Brief for 4.6
• Red Hat: OpenShift Ref Arch – Multiple

OEMs
• Dell: OpenShift Offering
• HPE: OpenShift Offering
• Cisco: OpenShift Offering
• Lenovo: OpenShift Offering
• Supermicro: OpenShift Offering
• Penguin Computing: OpenShift Offering

Collateral

Solution overview

Summary: The RA enables deployment of
performant and low-latency container-based
workloads onto different footprints, such as bare
metal, virtual, private cloud, public cloud, or a
combination of these, in either a centralized data
center or at the edge

Purpose: A general purpose OpenShift reference
architecture to showcase the best of Intel and Red
Hat products with key workloads

Solution ecosystem

ISVs OEMs / CSPs SIs

Cloud Pak for Data

No SQL DBs

Key Complete In Progress In Plan

https://www.intel.com/content/www/us/en/partner/showcase/redhat/openshift-container-platform-ref-arch-4-6.html
https://www.intel.com/content/www/us/en/partner/showcase/redhat/flexible-infrastructure-tailored-to-innovate-brief.html
https://cloud.redhat.com/blog/openshift-4-partner-reference-architectures
https://cloud.redhat.com/blog/openshift-4-partner-reference-architectures
https://www.delltechnologies.com/asset/en-us/products/ready-solutions/technical-support/h18217-openshift-container-dg.pdf
https://www.hpe.com/psnow/doc/a50002456enw
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_openshift_platform_4.html
https://lenovopress.com/lp0968-red-hat-openshift-container-platform-reference-architecture
https://www.supermicro.com/en/solutions/red-hat-openshift
https://www.penguincomputing.com/blog/penguin-computing-unveils-first-intel-select-solution-with-red-hat-openshift/

Agenda

▸ Introduction

▸ New architectures drives new technology needs

▸ Approach to meet new needs

▸ Summary

Java developers
worldwide

of the Fortune 500
are using Java

of companies use Java to build
over 80% of their applications

9M+ 90% 40%

Availability of
developers Specifications Stability#1 #2 #3

New architectures
drives new technology

needs

Technology trends

Cloud and Edge Computing Containers and Kubernetes Microservices Architecture

Event-driven Architectures and
reactive systems

Ⲗ
Serverless and FaaS

“Historical” Enterprise Java Stack

Operating System + Hardware/VM

Java Virtual Machine (Hotspot)

Application Server

App App App App App

Dynamic Application Frameworks

Architecture: Monoliths

Deployment: multi-app, appserver

App Lifecycle: Months

Memory: 1GB+ RAM

Startup Time: 10s of sec

Java Virtual Machine (Hotspot)

Application Server

App

Dynamic Application Frameworks

Architecture: Microservices

Deployment: Single App

App Lifecycle: Days

Memory: 100MBs+
RAM

Startup Time: Seconds

No
Change

“Modern” Enterprise Java Stack

Container platform

Node

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

Node

Go Go

Go Go

Go Go

Go Go

Go Go

Go Go

Go Go

Node

HotSpot Heap

HotSpot Heap

HotSpot Heap

HotSpot Heap

Hidden Truth About Java + Containers

THERE IS A NEED FOR A
NEW JAVA STACK FOR
CLOUD-NATIVE AND

SERVERLESS

Supersonic. Subatomic. Java.

Experts from cloud-native Java OS projects

Eclipse Vert.x Hibernate Eclipse MicroProfileRESTEasy WildFly Undertow OpenJDK

Benefits
Developer Joy

Live coding

Unified configuration

Frictionless local dev with dev services

Best of Breed Libraries & Standards

500+ extensions

“Powered by Quarkus” applications

Container First

Tailors your app for HotSpot & GraalVM

Fast boot time and low RSS memory

Serverless fit

Unifies Imperative &
Reactive

Combines blocking and non-blocking

Built-in event bus

Benefit No. 1: Container First
“We went from 1-min startup times to 400 milliseconds”

Quarkus
+ Native
12 MB

Quarkus + JVM
73 MB

Traditional
Cloud-Native Stack

136 MB

Reduced Memory
Footprint

Quarkus + Native (.016 secs)

Quarkus + JVM (0.943 secs)

Traditional
Cloud-Native
Stack (4.3 secs)

Fast Startup Time Smaller Disk
Footprint

Supersonic, Subatomic Java

Boot + First Response Time (in seconds)

Quarkus + Native (via GraalVM) 0.016 Seconds

REST

REST + CRUD

Quarkus + JVM (via OpenJDK) 0.943 Seconds

Quarkus + Native (via GraalVM) 0.042 Seconds

Quarkus + JVM (via OpenJDK) 2.033 Seconds

Traditional Cloud-Native Stack 9.5 Seconds

Traditional Cloud-Native Stack 4.3 Seconds

Time to first response

REST + CRUD*

Quarkus + Native
(via GraalVM)

28 MB

Quarkus + JVM
(via OpenJDK)

145 MB

Traditional
Cloud-Native Stack

209 MB

*Memory (RSS) in Megabytes, tested on a single-core machine

Supersonic, Subatomic Java

Cloud Native Java Stack + Containers

CONTAINER ORCHESTRATION

Node

EAP, WAS Liberty or
Spring Boot

EAP, WAS Liberty or
Spring Boot

EAP, WAS Liberty or
Spring Boot

EAP, WAS Liberty or
Spring Boot

Node

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS
Node

Go Go Go

Go Go Go

Go Go Go

Go Go Go

Go Go Go

Go Go Go

Go Go Go

https://developers.redhat.com/blog/2017/03/14/java-inside-docker/

Node

Quarkus on JVM

Quarkus on JVM

Quarkus on JVM

Quarkus on JVM

Quarkus on JVM

Quarkus on JVM

Quarkus on JVM
Node

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

Quarkus
Native

“We could run 3 times denser deployments without sacrificing availability and response times of services”

A cohesive platform for optimized developer joy:

● Based on standards and more

● Unified configuration

● Live coding

● Streamlined code for the 80% common usages,

flexible for the 20%

● No hassle native executable generation

● Zero configuration with dev services

● Continuous testing for instant feedback

Benefit No. 2: Developer Joy
“Our developers used to wait 2 to 3 mins to see their changes. Live coding does away with this.”

Benefit No. 3: Unifies Imperative and Reactive

● Combine both Reactive and imperative development in the same application
● Inject the EventBus or the Vertx context
● Use the technology that fits your use-case
● Key for reactive systems based on event driven apps

@Inject
SayService say;

@GET
@Produces(MediaType.TEXT_PLAIN)
public String hello() {

return say.hello();
}

@Inject @Stream(”kafka”)
Publisher<String> reactiveSay;

@GET
@Produces(MediaType.SERVER_SENT_EVENTS)
public Publisher<String> stream() {

return reactiveSay;
}

Benefit No. 4: Best of Breed Frameworks & Standards

Eclipse Vert.x Hibernate RESTEasy Apache Camel Eclipse MicroProfile Netty

Kubernetes OpenShift Jaeger Prometheus Apache Kafka Infinispan

Flyway Neo4j MongoDB MQTT KeyCloak Apache Tika

“When you adopt Quarkus, you will be productive from day one since you don’t need to learn new technologies.”

Use Cases

NET NEW MONO 2 MICRO

SERVERLESS EVENT-DRIVEN/REACTIVE

Low memory footprint + lightning fast
startup time + small disk footprint = an
ideal runtime for Kubernetes-native
microservices

Quarkus is a great choice to modernize
existing monolithic applications by
breaking it into smaller, loosely coupled
microservices.

Quarkus utilizes an asynchronous, reactive
event loop that makes it easy to create
reactive applications.

Scaling up or down (0) is extremely fast
with Quarkus making it an ideal runtime for
creating serverless applications.

Demo

HOW DOES QUARKUS
WORK?

Quarkus - Optimizing the Java Stack

Optimized Application Frameworks

Vert.x + Netty

Architecture: Microservices, Serverless

Deployment: Single App

App Lifecycle: Milliseconds to Days

Memory: 10MBs+ RAM

Startup Time: Milliseconds

Java Virtual Machine (Hotspot)

Optional

App

@
@</>

Packaging
(maven,
gradle…)

Build Time Runtime

Load config file
from file system

Parse it

Classpath scanning
to find

annotated classes
Attempt to load

class to
enable/disable

features

Build its
model of
the world.

Start the
management

(thread,
pool…)

How Does a Framework Start?

@
@</>

The Quarkus Way

@
@</>

Build Time Runtime

RuntimeBuild Time

The Quarkus Way enables Native
compilation

Native

@
@</>

JVMBuild Time

Case studies

QUARKUS

Customers using Quarkus Today

“We could run 3 times
denser deployments
without sacrificing
availability and
response times of
service”

“When you adopt
Quarkus, you will be
productive from day
one since you don’t
really need to learn
new technologies.”

“Quarkus seemed to
provide the performance
boost we needed while at
the same time having a
good backer (Red Hat)
and relying on
battle-tested
technologies”Thorsten Pohl

Lufthansa Technik AVIATAR
Product Owner Automation &
Platform Architect

Roberto Cortez
Talkdesk Principal Architect

Christos Sotiriou
DXL technical lead at Vodafone Greece

https://docs.google.com/document/d/1DDHiJf9BtLWk37nJuURihEhADQX4ny9_7ZwJZHP8XLs/edit
https://quarkus.io/blog/talkdesk-chooses-quarkus-for-fast-innovation/
https://quarkus.io/blog/vodafone-greece-replaces-spring-boot/

Vodafone Greece

“Quarkus seemed to
provide the performance
boost we needed while at
the same time having a
good backer (Red Hat)
and relying on
battle-tested
technologies”

Christos Sotiriou
DXL technical lead at Vodafone Greece

Source: Vodafone Greece replaces Spring Boot with Quarkus,

Challenge
Running 140 microservices, with heavy spikes in traffic, caused delays and pause while booting
new containerized applications leading to waste of marketing efforts.

Solution
After initial tests indicated that Quarkus would reduce application boot times, reduce CPU and
memory usage, and make the entire development process run faster, Vodafone decided to port
their most essential libraries and microservices to this new stack.

Why Quarkus
The main criteria for their selection process to find a replacement for Spring Boot were developer
efficiency, lower cloud resource consumption and shorter applications boot-up times. A great
impact on cloud resource consumption costs as well as user experience improvement. Their trust
of Red Hat combined with its credibility in the software market gave them the assurance that they
were making the right choice by selecting Quarkus, whose sponsor is Red Hat.

Results
● Start-up times have been reduced to almost a quarter without any optimization
● Memory resource consumption was cut in half in JVM mode
● The use of the Quarkus live coding capability (a.k.a. dev mode) resulted in an increase of

developer productivity
● Migrating from Spring Boot to Quarkus didn’t require a lot of effort for their Spring

developers, resulting in a small learning curve
● Far healthier cluster overall, as it is no longer experiencing difficulty in handling the

sudden traffic spikes driven by the company’s direct marketing campaigns

https://quarkus.io/blog/vodafone-greece-replaces-spring-boot/
https://quarkus.io/blog/vodafone-greece-replaces-spring-boot/

Where to learn
more?

https://quarkus.io

https://quarkus.io/

https://quarkus.io/guides/

https://www.redhat.com/en/services/training/red-hat-cloud-native-microservices-development-quarkus-do378

https://www.redhat.com/en/services/training/red-hat-cloud-native-microservices-development-quarkus-do378

https://developers.redhat.com/e-books/
fre

e e-books

https://developers.redhat.com/e-books/quarkus-spring-developers
https://developers.redhat.com/e-books/quarkus-cookbook
https://developers.redhat.com/e-books/understanding-quarkus
https://developers.redhat.com/e-books/practising-quarkus

Developer Sandbox

Get free access for renewable 30 days to a self-service,
cloud-hosted Kubernetes experience with
Developer Sandbox for Red Hat OpenShift.

https://developers.redhat.com/developer-sandbox

https://developers.redhat.com/developer-sandbox

Download
https://red.ht/3IxJCzY

fre
e e-books

https://red.ht/3IxJCzY

Summary

Summary

▸ New architectures and design

principles drive new needs on

technology. New requirements on

Java to stay relevant.
e.g. Cloud and Edge Computing, Containers & K8S, MSA,

EDA, Serverless/FaaS

▸ Red Hat is investing in upstream projects

that modernise Java to meet new needs.

▸ Helps organisations to protect Java

investments & skill sets to modernise

legacy as well as develop the next

generation of cloud native applications.

▸ Quarkus has superfast startup times

and low memory consumption, and

at the same time provide a very

pleasant and productive experience

for developers.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

