
Overview

Quarkus

Waeil Eldoamiry Principal Solutions Architect

2

Is Java dead!?

Q3 plot for 2020

Simply No, and more important, A lot of efforts
have been put together to make Java more Cloud
native● Smaller footprint (Memory and CPU)
● Fast Ignition
● Optimized for short-live processes
● Imperative and Reactive
● Supporting cloud dev models (Serverless and Microservices)
● Kubernetes native
● Fat Jars and Native Executable

3

But, Java is slow?

Multi-step runtime process

Multi Step runtime
process

Due to the multi-step execution process described
above, a java program is independent of the target
operating system. However, because of the same, the
execution time is way more than a similar program
written in a compiled platform-dependent program

ClassLoader loads
the main class and all
dependencies.
Remember
Dependency
resolution happens at
the byte code level

4

But, Java is slow?

Multi-step runtime process

Multi Step runtime
process

Due to the multi-step execution process described
above, a java program is independent of the target
operating system. However, because of the same, the
execution time is way more than a similar program
written in a compiled platform-dependent program

ClassLoader loads
the main class and all
dependencies.
Remember
Dependency
resolution happens at
the byte code level

5

What you might not know!

Dependency Injection
Java developers heavily rely on DI applying patterns like dynamic
proxies and IoC.

What does this mean?
Developers declaratively specify what should happen and the
implementation makes sure it does.

- Dependency resolution happens at runtime that results in
heavy lifting and long start up time.

- Is there a chance that dependency resolution fails? Yes, what
is the impact? Application will not start “very famous class not
found exception”

- JEE has CDI specs - Context and dependency injection - and
Weld provides the reference implementation and It is
integrated in most Application servers if not all.

Weld

● All beans are discovered
at startup

● Proxies are dynamically
generated

● Extensive use of
reflection

● Expensive to start

http://cdi-spec.org/
http://weld.cdi-spec.org/

CDI reference implementation

6

RSS (Resident Set Size memory) = actual RAM used by a process without SWAP

Java HeapMetaspace DirectCode Internal

● Startup overhead
○ # of classes, bytecode, JIT

● Memory overhead
○ # of classes, metadata, compilation

The hidden truth about Java

Classes are indexed, Metadata about annotation is created, injections and dependency resolution
happens. This all is waste of memory and time.

Resident Set Size is the amount of physical memory currently allocated and used by a process (without swapped out pages)

7

Experts did a great job
addressing Java performance.
But no matter what experts

do, Java is still slow :)

8

Cloud and Java don’t mix They mix, and produced !!

Quarkus is a K8 native java stack.

Subatomic because It is very small and lightweight

Supersonic because it is fast with unbeatable ignition time

Supported on OpenJDK and GraalVM

9

QUARK: elementary particle (subatomic) / US: hardest thing in computer science

Whats is Quarkus?

10

Quarkus Architecture

Quarkus Extensions

RE
ST

Ea
sy

N
et

ty

H
ib

er
na

te
 O

RM

H
ib

er
na

te
 V

al
id

at
or

M
P

O
pe

nA
PI

M
P

JW
T

Ec
lip

se
 V

er
t.X

Ag
ro

al
 (c

on
n

po
ol

)

N
ar

ay
an

a
JT

A

M
P

Re
ac

tiv
e

M
es

sa
gi

ng

Ap
ac

he
 C

am
el

...

Quarkus Core

Arc (DI)

Jandex Gizmo Graal SDK

JIT (OpenJDK) HotSpot AOTC (GraalVM Native Image)

Read
Metadata and

resolve
annotation

Generate
bytecode

Native code
generation

Dependency
Injection

Security
Integration
Automation

...

Just in time Ahead of time

Ahead-of-time techniques vs Just-in-time

During the build, some work like annotation scanning, XML parsing, resolving
dependencies, declares which classes need reflection at runtime and generates
static proxies to avoid reflection, and more is pre-computed.

Quarkus can also use GraalVM to generate native executables using
native-image.

This has two direct benefits: faster startup time and lower memory consumption.

11

How does It work?

Augmentation Augmentation
Jandex

Parse any descriptors and read
annotations, but should not

attempt to load any application
classes

Gizmo

Generating
bytecode

Where is the value?
OOOK! Take This Scenario
While XML parsers are required to parse
descriptors and configuration files in other
frameworks, in Quarkus The only reason
that a Quarkus application should load an
XML parser is if the user is using XML in
their application. Any XML parsing of
configuration should be done in the
Augmentation phase.

Move Forward!

Quarkus aims to do as much work as possible at build
time, to keep the resulting application as small and

fast as possible

Runtime should only contain classes that are needed
to actually run the application.

12

Quarkus Core Philosophy

Fast
Ignition

Min
footprint

● Context Dependency Injection - CDI
○ Injecting bean into another
○ Injecting configuration
○ Injecting resources to a component

● CDI is built on the concept of "loose coupling, strong typing", meaning that beans are loosely coupled, but
in a strongly-typed way.

● CDI is also bringing interceptors, decorators and events to DI.
● Quarkus is based on a CDI implementation called ArC
● ArC doesn’t fully implement CDI, only most commonly used subset of the specification is implemented.

13

CDI - The foundation

Don’t tell anyone

● Context Dependency Injection - CDI
○ Injecting bean into another
○ Injecting configuration
○ Injecting resources to a component

● CDI is built on the concept of "loose coupling, strong typing", meaning that beans are loosely coupled, but
in a strongly-typed way.

● CDI is also bringing interceptors, decorators and events to DI.
● Quarkus is based on a CDI implementation called ArC
● ArC doesn’t fully implement CDI, only most commonly used subset of the specification is implemented.

14

CDI - The foundation

15

ArC - The magic

● ArC is a build-time oriented dependency injection
based on CDI 2.0

● Beans and proxies generated at build time
● Removing Unused Beans (In standard CDI, all beans are

retained by the container no matter whether they’re
needed or not)

● Minimal reflection (private members only)
● Startup is very fast

ArC plus integration runtime
consist of 72 classes and
occupies ~ 140 KB in jars.

Weld 3.1.1 (CDI Reference
Implementation) core is
roughly 1200 classes and
approx. 2 MB jar.

In other words, ArC runtime
takes approx. 7% of the Weld
runtime in terms of number of
classes and jar footprint.ArC Supported features

https://quarkus.io/guides/cdi-reference#supported_features

https://quarkus.io/guides/cdi-reference

Application jar16

Quarkus Packaging

● Application code only Jar
● Executable (Runnable) Jar

○ It is an executable JAR, not an Uber-JAR
○ Quarkus copies all the dependencies into the target/quarkus-app/lib directory
○ All dependencies are listed under target/quarkus-app/quarkus-app-

dependencies.txt
○ Jar MANIFEST.MF contains Class-Path pointing to all jars under target/lib directory
○ Jar MANIFEST.MF contains Main-Class: io.quarkus.runner.GeneratedMain

ClassA.java

ClassB.java

application.properties

ClassA.class

ClassB.class

application.properties

Application runnable jar

ClassA.class

ClassB.class

application.properties
Class-Path

MANIFEST.MF

Main-Class

Package your app (Rest + CRUD)
$ mvn clean package
→ app-1.0.0-SNAPSHOT.jar (~406 KB)
→ app-1.0.0-SNAPSHOT-runner.jar (~12 KB)
→ lib folder (~19 MB)
Run your app

$ java -jar target/physicians-1.0.0-SNAPSHOT-runner.jar

17

Quarkus Packaging

MANIFEST.MF adds lib folder to classpath

18

Quarkus Native Executable
Rest + JPA CRUD ~ 1 second startup time, is this enough!

Do you think 1 second is CLOUD ENOUGH!

Go Native!
Native Image
Rest + JPA CRUD (Native) ~ 36 milliseconds19

Quarkus Native Executable
Rest + JPA CRUD ~ 1 second startup time, is this enough!

Do you think 1 second is CLOUD ENOUGH!THIS IS VERY CLOUUUUUD

Quarkus on GraalVM

20

Native Image
It is a technology to ahead-of-time compile Java code to a standalone executable, called a
native image. This executable includes the application classes, classes from its dependencies,
runtime library classes, and statically linked native code from JDK. It does not run on the Java
VM.
Install GraalVM native-image builder tool for your OS
$ {GRAALVM_HOME}/bin/gu install native-image
Build your binary executable (native image) using maven Quarkus plugin
$ mvn package -Pnative
Run your Executable

Quarkus on GraalVM

21

Native Image
It is a technology to ahead-of-time compile Java code to a standalone executable, called a
native image. This executable includes the application classes, classes from its dependencies,
runtime library classes, and statically linked native code from JDK. It does not run on the Java
VM.
Install GraalVM native-image builder tool for your OS
$ {GRAALVM_HOME}/bin/gu install native-image
Build your binary executable (native image) using maven Quarkus plugin
$ mvn package -Pnative
Run your Executable

22

Kubernetes

When bootstrapping Quarkus application, Two Docker files are generated

● Dockerfile.jvm: To containerize the application using the generated JAR

● Dockerfile.native: To containerize the application using the native executable

For Openshift deployment

Use the magic of S2I

$ mvn clean package -Dquarkus.kubernetes.deploy=true
Add -Dquarkus.kubernetes-client.trust-certs=true to accept self-signed certs

Isn’t it easy!!!

But What is happening?

Deploy on Openshift

23

Push image

$ mvn clean package -Dquarkus.container-image.push=true

Push image and deploy the app

$mvn clean package -Dquarkus.kubernetes.deploy=true

Deploy on Openshift

24

Serverless it! 1 - Create Knative svc

2 - Create revision

3 - Split the traffic

Quarkus supports the notion of configuration profiles. This allows you to have multiple configurations in the same file and to

select them via a profile name.

By default, Quarkus has three profiles, although it is possible to create your own and use as many as you like. The built-in

profiles are:

● dev: Activated when in development mode (when running mvn quarkus:dev).

● test: Activated when running tests.

● prod: The default profile when not running in development or test mode.

The syntax is %{profile}.config.key=value in the application.properties file.

For example

%dev.quarkus.mongodb.connection-string = mongodb://localhost:27017/persons

If profile is omitted, then the property works for all

Then, you set the system variable depending on your needs:

• Use mvn -Dquarkus.profile=staging quarkus:dev if you are developing,

• Or java -Dquarkus.profile=staging -jar profiles-1.0-runner.jar if you are running your executable JAR.

25

Profiles

Some Quarkus Profile Configuration Properties

Metrics in two steps

● Install Quarkus Prometheus extension

● Access your metrics http://URL:PORT/q/metrics

26

Metrics and Health Check

Health in two steps

● Install Quarkus smallrye health extension

● Access your health probes
○ /q/health/live - The application is up and running.

○ /q/health/ready - The application is ready to serve

requests.

○ /q/health/started - The application is started.

○ /q/health - Accumulating all health check procedures in the

application.

Start you app in Dev mode

● mvn quarkus:dev

● Access dev UI /q/dev

27

Dev UI

{ Your code }

Application Environment with Red Hat

28

“Quarkus powers the next-generation Red Hat stack for hybrid-cloud applications”

Quarkus

Camel-K

Kogito

● Build and run your camel routes natively on
Kubernetes on suing serverless and microservice
architectures

● Architectured by Kubernetes CRDs and Operators
● Part of Apache Camel. Started on August 31st, 2018

29

CamelK VSCode

30

Kogito
● Encapsulate your business processes/rules into your microservices
● Fit into Knative serverless
● Superfast boot time, low footprint (GraalVM native image)
● Operator-driven service lifecycle management
● Leveraging / integrating many other (cloud) technologies
● Variety of developer tools
● GUI Process designer
● Swagger docs

VSCode

Demo Time

https://github.com/wael2000/quarkus-hackathon

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you

